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Abstract. We study the possible intantaneous gelation inn-tuple coagulation processes with
a pairwise coalescence mechanism. This reaction mechanism, which is characteristic of the
many-body aggregation model, and is not shared by the usual binary coagulation, may increase
the reaction rate and so make instantaneous gelation a physically possible process for then-
tuple coagulation model. We show that the generalized Smoluchovski coagulation equation
(GSE) predicts instantaneous gelation if the reaction kernels behave asK(i1, i2, . . . , in) '
i
µ
1 i2 · · · in−1)

µ′
iνn asin → ∞, with an exponentν satisfyingν > 1. This type of reaction kernel

is related to the multiple-siten-tuple coagulation process, and corresponds to possible physical
systems, in contrast to the case of binary coagulation where such kernels do not occur in the
corresponding physical systems. We also study the structure of gel solutions of the GSE. We
found that, ifµ > ν − 1, the cluster size distributionck(t) approaches a universal form at large
times (t → ∞).

1. Introduction

The kinetics of cluster growth and its critical properties have been the object of considerable
interest. In the study of the kinetics of irreversible aggregation and clustering phenomena,
Smoluchovski’s coagulation equation proved to be one of the few available theoretical tools
in many fields of physics, atmospheric physics, colloidal chemistry, biology, and technology
[1–5]. In Smoluchovski theory, clusters are assumed to grow purely through the process
of binary coalescence, because the concentration of the growing clusters is assumed to be
sufficiently low that many-body collisions can be neglected. Describing the system by a set
of concentrationsck(t) of k-particle clusters, the time evolution of the cluster concentration
is determined by the following kinetic equation [6–10]:

ċk = 1

2

∑
i+j=k

K(i, j)cicj − ck

∞∑
j=1

K(k, j)cj (1)

where the coagulation kernelK(i, j) represents the rate coefficient for a specific clustering
mechanism between clusters of sizesi and j . The first sum gives the increase ofck(t) as
a result of the coalescence of clusters satisfying the conditioni + j = k while the second
term accounts for the decrease ofck(t) due to the binary collision of thek-particle clusters
with clusters of any size. In this mean-field kinetic theory the spatial fluctuations in the
cluster distribution and the geometrical structure of the growing clusters are completely
ignored. Therefore, Smoluchovski coagulation theory is applicable only to dilute, idealized
aggregation systems, where only binary collision is appreciable. It is, however, obvious
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that in a variety of physical and chemical coagulation processes, clusters may be formed
by binary, ternary, or generallyn-tuple collisions, as a result of high concentration of the
aggregates, correlations between the growing clusters, or specific coagulation mechanisms,
etc. For example, if we assume that the reaction force which binds two aggregating clusters
is finite, in respect of the relative motion between two clusters, then it is reasonable to
assume that the clusters formed by a ternary collision may be structurally more stable than
those formed by a binary collisions. This phenomenon is more likely to occur in ballistic
aggregation [11, 12], especially when the velocities of the aggregates are large. Under
certain conditions, it is also possible that a specific coagulation mechanism may favour a
particularn-tuple aggregation, where a special structure (say, a ramified ring) is required to
maintain the biological activity of the clusters thus formed. Here we would like to stress
that we are not interested in the concrete chemical or biophysical processes, where the use
of Smoluchovski coagulation theory is not justified. What we would like to know is to
what extent a Smoluchovski-like mean-field theory for aggregation is relevant when the
aggregation system deviates from the dilute, idealized conditions for which Smoluchovski
kinetic theory is valid. It should be noted that in any aggregation process, as long as clusters
can be formed by binary collision, binary aggregation prevails. If this is the case, we wish
to know what the effects are of the high-order (n-tuple) aggregation on the properties of
the whole aggregating system. It therefore seems to be relevant to study first the process of
purely n-tuple aggregation, and it is expected that a better understanding of purely many-
body coagulation may help us gain insight into complicated, mixed multiple coagulation.

Recently we proposed a generalized Smoluchovski coagulation theory to study purely
n-tuple aggregation processes [13–15]. In this theory, the clusters aggregate through the
following scheme:

Ai1 + Ai2 + · · · + Ain → Ai1+i2+···in
where the time evolution of the cluster size distribution is assumed to be described by the
generalized Smoluchovski equation

ċk = 1

n!

∑
i1+i2+···+in=k

K(i1, i2, . . . , in)ci1ci2 · · · cin

−ck

∞∑
i1,i2,...,in−1=1

K(i1, i2, . . . , in−1, k)ci1ci2 · · · cin−1. (2)

Here the coagulation kernelK(i1, i2, . . . , in) represents the reaction rate for a special
clustering mechanism betweenn clusters of sizesi1, i2, . . . , in, and in. In all previous
studies ofn-tuple aggregation, the aggregating clusters are assumed to react with one another
through one reaction site, which is a straightforward generalization of binary coagulation.
Therefore, the solution to the generalized Smoluchovski equation shows a similar structure
to that of the classical Smoluchovski equation. However, it is obvious that inn-tuple
aggregation there are many different ways through which clusters can react with one another
and produce large clusters. For example, the clusters can coalesce through ‘end-to-end’
sticking. Hence, the reaction mechanism can actually be divided into two main classes,
according to the number of the reaction sites involved. That is, single-site and multiple-
site reaction mechanisms. Of course, the probability that a multiple-site reaction occurs in
n-tuple aggregation is generally greater than that of a single-site reaction.

In this work we shall study the properties ofn-tuple aggregation with a multiple-
site reaction mechanism. It should be noted that since the reaction can take place at
different parts of different clusters in multiple-siten-tuple aggregation, it may need an
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appropriate definition of the reaction time forn-tuple aggregation, because a set of sequential
pairwise binary reactions are more likely to happen than a simultaneous many-body reaction.
However, the sequential binary collisions within a very short time period would undermine
the idealized conditions under which the Smoluchovski theory is valid, since the clusters
are not uniformly distributed in this case. This is just another aggregation model system for
which we would like to find an approximate theory to describe its kinetic behaviour. Our
aim is to seek a mean-field description for the time evolution of the cluster size distribution
in n-tuple aggregation, without going into the details of the concrete physical or chemical
reaction processes.

The outline of the paper is as follows. In section 2 we show that for homogeneous
reaction rates withν > 1 the gelation transition can take place instantaneously. This
instantaneous gelation is a result of a special choice of the multiple-siten-tuple reaction
mechanism. In section 3 we study the structure of gel solution to the generalized
Smoluchovski equation, and in section 4 we discuss our results.

2. Pre-gel behaviour of the moments

In multiple-siten-tuple aggregation, there exist a large number of ways that the aggregating
clusters can coalesce with one another. Since the reaction rateK(i1, i2, . . . , in) is assumed
to represent the coagulation rate for a specific clustering mechanism, one expects that, by
choosing an appropriate reaction rate, multiple-siten-tuple aggregation will show much
richer behaviour than single-siten-tuple aggregation. One notable feature of multiple-site
n-tuple aggregation is that instantaneous gelation is a physically possible transition, if we
assume that everyAk has a certain number of reactive sites, saysk, which are equally
active, independent of the size of the molecules to which they belong. It is geometrically
obvious that the number of reactive sites onAk cannot grow faster thank, i.e. sk < k.
In binary coagulation models, two clusters coalesce through one reaction unit. The linear
growth of thesk (that is, sk ∼ Ck) in this model is equivalent to the absence of cycles
in the structure ofAk, corresponding to the Flory–Stockmayer model of gelation [3, 4].
However, in multiple-siten-tuple aggregation, there exist various ways for coalescence to
occur betweenn molecules. For example, in a triple coagulation process, three polymers
may bond together through one same reaction site to form a star-like cluster, or through
two different reaction sites to form a chain-like cluster, and or through three different
reaction sites to form a ring-like structure. The kinetic behaviour for ‘star-like’ aggregation
has been studied extensively by using the generalized Smoluchovski equation [13–15]. It
is clear that the instantaneous gelation transition does not occur for physical systems for
single-siten-tuple aggregation.

In this work we are concerned with the kinetic behaviour of the ‘chain-like’, or multiple-
site n-tuple aggregations, in which some of then clusters coalesce in a pairwise manner.
Since in this aggregation model it is not necessary that an-tuple reaction take place on one
reaction site, the possibility of such reactions is enhanced by the increase in the combinatorial
ways thatn clusters are linked to one another. It is not our purpose to determine the reaction
rates for concrete physical and chemical processes; what we are interested in is the study
of the effects of such a multiple-site reaction mechanism on the kinetic behaviour of the
cluster size distribution.

The assumption of pairwise coalescence mechanism leads to the following ansatz:

K(i, j) = sisj (3)

K(i, j, k) ∼ sisj sj sk + sj sisisk + sj sksksi (4)
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...

K(i1, i2, . . . , in) ∼
n−1∑
k=1

5i=ik ,j=ik+1sisj . (5)

If we further assume that

sk ∼ kµ

then equation (5) can be written as

K(i1, i2, . . . , in) ∼ i
µ1
1 i2µ2 · · · iµn

n (6)

and one finds that it is possible thatµi > 1 for somei. We recall that for binary coagulation
models, coagulation kernels defined by (6) withµi > 1 do not occur in physical systems.
However, forn-tuple coagulation, the reaction kernels given by (6) do correspond to certain
coagulation processes of physical systems.

To simplify our discussion, we will be concerned with the following homogeneous
kernels:

K(ai1, ai2, . . . , ain) = aλK(i1, i2, . . . , in). (7)

Following the standard scaling theory of the Smoluchovski equation [6], we further assume
that

K(i1, i2, . . . , in) ∼ K0(i1, i2)K1(i3, . . . , in)

∼ i
µ

1 (i2i3 · · · in−1)
µ′

iνn in � i1 λ = µ + ν + (n − 2)µ′ (8)

with µ > 0 corresponding to class I systems,µ = 0 to class II, andµ < 0 to class III.
There are two physical restrictions on the exponents: forn large interpenetrable clusters
K(j, j, . . . , j) ∼ jn, which is an upper bound for allK(j, j, . . . , j) asj → ∞, and thus
λ 6 n. Since aj -mer contains at mostj monomers, we require thatν 6 1. We stress that
the reaction kernels considered in this work are actually characterized by two exponents.
The case where the reaction kernels are characterized by more than two exponents will be
discussed elsewhere. It should be noted that in class I (III) the rate constants for reactions
of at least two large clusters involved (at least one large and one small cluster involved)
are dominant, irrespective of the sizes of the othern − 2 clusters. In class II the rate
constants are equal for aggregation of clusters of different sizes. By a similar argument, it
has been shown that non-gelling systems correspond toλ 6 n − 1, and gelling systems to
n − 1 6 λ 6 n [13].

The gelation transition can be studied by analyzing the momentsMα of the cluster size
distribution, which are defined by

Mα(t) =
∞∑

k=1

kαck(t). (9)

The time dependence ofMα is described by the moment equations, which may be derived
from the generalized Smoluchovski equation if both sides of (2) are multiplied bykα and
summed over allk:

Ṁα = 1

n!

∞∑
i1=1

∞∑
i2=1

· · ·
∞∑

in=1

K(i1, i2, . . . , in)ci1ci2 · · · cin

[
(i1 + i2 + · · · + in)

α

−iα1 − iα2 − · · · − iαn
]
. (10)
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It should be noted that the moment equations are valid only if all momentsMα are finite.
This requires thatck(t) falls off sufficiently fast ask → ∞. In what follows we shall
show that for a specially chosen reaction kernel (8), the cluster size distributionck(t) is
exponentially bounded ask → ∞. First let us derive an upper bound for the massM(k)(t)

contained in clusters of sizej > k:

M(k)(t) =
∞∑

j=k

jcj (t). (11)

It follows that

ck(t) 6 k−1
∞∑

j=k

jcj (t) (12)

thus, if we can show that
∑∞

j=k jcj (t) is exponentially bounded, the desired ineqality follows.

Assume that fort < tc the sol mass is conserved, i.e.̇M(t) = ∑
j ċj (t) = 0. In

combination with (2) we find that

Ṁ(k)(t) = 1

(n − 1)!

k−1∑
i1=1

∞∑
i2=1

· · ·
∞∑

in=1

i1K(i1, i2, . . . , in)ci1ci2 · · · cin

− 1

(n − 1)!

k−1∑
i1=1

k−i1+1∑
i2=1

k−i1−i2+1∑
i2=1

· · ·
k−i1−i2−···−in−1+1∑

in=1

i1K(i1, i2, . . . , in)ci1ci2 · · · cin .

(13)

Since ck(t) > 0 and all moments are finite, then after rearranging equation (13) and
neglecting some irrelevant positive terms we obtain

Ṁ(k)(t) > 1

(n − 1)!

k−1∑
i1=1

∞∑
i2=1

· · ·
∞∑

in=k−i1−i2−···−in−1

i1K(i1, i2, . . . , in)ci1ci2 · · · cin . (14)

Now we assume thatcj (0) = 0 for 1 6 j 6 l − 1, but cl(0) 6= 0. SinceK(l, l, . . . , in) ∼
lν(i2i3 · · · in−1)

µ′
iνn if in >> l, on account of (8), there must be some finite constant

k0 > l + 1, such that for allin > k0

K(l, l, . . . , in) > lν(i2i3 · · · in−1)
µ′

iνn . (15)

Substitution of (15) in equation (14) yields

Ṁ(k)(t) > alcl(t)k
ν−1Mn−2

µ′ (t)M(k)(t) k > k0 (16)

whereal = l1+µ. Straightforward integration of (16) from timet to tc yields the following
inequality forM(k)(t):

M(k)(t) 6 exp

(
−alk

ν−1
∫ tc

t

dt ′ cl(t
′)Mn−2

µ′ (t ′)
)

. (17)

It follows that ck(t) is exponentially bounded fort < tc. As a result, all moments are finite
and the moment equations are valid fort < tc.
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3. Instantaneous gelation

In this section we show that the generalized Smoluchovski equation predicts an instantaneous
gelation transition, if the relatively large clusters coagulate with small clusters through
multiple-site reaction mechanism (which means the reactivity of relatively large clusters
increases faster than their size).

The gelation transition manifests itself by the divergence of the mean cluster size and
by the onset of a mass flux from the finite-size clusters (sol particles) towards the clusters
of infinite size or gel. The mass flux from the sol to the gel phase may be calculated as
follows. Multiplication of (2) byk and summation over allk 6 L gives an equation for the
mass fluxJ (L, t) from clusters of sizek 6 L to clusters larger thanL:

J (L, t) = Ṁ(L+1)(t).

If J (L, t) = 0 for all times, then the sol mass is conserved, and one hasM(t) = 1. On the
other hand, ifJ (L, t) 6= 0, for all t > tc, then gelation transition occurs attc, since there is
a non-vanishing mass flux of finite-size particles (sol) to the infinite cluster (gel).

In order to show that generalized Smoluchovski equation predicts an instantaneous
gelation transition forν > 1, we assume that, for some initial distributionck(0) > 0 with∑

kck(0) = 1 and some time interval 06 t < tc, there exists a continuously differentiable
solution ck(t) of the GSE, with the property that the sol mass is conserved:M(t) = 1
for all t < tc. Thus, we can use moment equations to discuss the critical behaviour near
the gelation transition. Then we show that at any fixed timet > 1 the moment equations
predict a divergence of some of the momentsMm(t), which contradicts the assumption.
This implies that there is no pre-gelation solution of GSE forν > 1, and gelation occurs
instantaneously.

Here it is assumed thatck(t) falls off sufficiently fast ask → ∞, such that all moments
Mm(t) are finite. We use the moment equations (10) for integer numbers to obtain a lower
bound for the momentMm(t). It can be shown that the lower bound diverges at some finite
time tm > 0, with tm → 0 asm → ∞. Since all momentsMm(t) are finite for t < tc,
clearly tm sets an upper bound to the gel timetc, i.e. tc 6 tm for all values ofm. Thus,
tc = 0 if tn → 0 asm → ∞.

First let us calculate a lower bound for the reaction kernels (8). Since it is assumed that
the reaction kernels can be factorized as

K(i1, i2, . . . , in) ∼ K0(i1, i2)K1(i3, . . . , in)

and the property ofK0(i, j) determines the behaviour of the system under consideration,
we consider only a lower bound ofK0(i, j), which is given by

K0(i, j) > K ′(iβj ν + jβiν) (18)

whereβ = min{µ, ν} andK ′ is a constant.
Substitution of the lower bound forK0(i, j) in (8), one finds

K(i1, i2, . . . , in) > K ′iβ1 (i2i3 · · · in−1)
µ′

iνn . (19)

Inserting equation (19) in the moment equations yields

Ṁm > 1

n!

∞∑
i1=1

∞∑
i2=1

· · ·
∞∑

in=1

ci1ci2 · · · cin

×
m∑

n1=0

m−n1∑
n2=0

· · ·
m−n1−n2−···−nn−1∑

nn=0

(
m

n1

)(
m − n1

n2

)(
m − n1 − n2

n3

)
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· · ·
(

m − n1 − n2 − · · · − nn−1

nn

)
i
β+n1
1 i

µ′+n2
2 · · · iµ′+nn−1

n−1 iν+m−n1−n2−···−nn

n .

(20)

In the next approximation, we take into account only the term ofn1 = 1 and
n2 = n3 = · · · nn = 0; then from (14) we obtain

Ṁm > K ′

n!
Mn−2

µ′ M1+βmMm+ν−1. (21)

SinceMµ′ and M1+β are finite for 06 t 6 tc we may transform to a new time variable
τ(t), which is defined by

τ(t) = K ′

n!

∫ t

0
dt ′ M1+β(t ′)Mn−2

µ′ (t ′). (22)

Then equation (21) becomes

dMm

dτ
> mMm+ν−1. (23)

By using Jensen’s inequality, one can obtain an equation in terms ofMm(τ) only. If we
define the average value of some functionA(k) of the cluster sizek by

E[A(k)] ≡
∞∑

k=1

kA(k)ck (24)

then Jensen’s inequality [16] states that for any non-negative functionf (k) and any convex
function φ(x) the following relation holds:

E[φ(f (k))] > φ(E[f (k)]). (25)

As a immediate consequence we have

Mn−ν−1 = E[φ(kn−1)] > φ(E[kn−1]) = φ(Mn) (26)

provided that we chooseφ(x) = x(n+ν−2)/(n−1). This choice forφ(x) is clearly convex,
sinceν > 1.

Substitution in (23) of the inequality (26) finally gives an equation in terms ofMm(τ)

alone:

Ṁm

dτ
> mM1+γ

m γ = ν − 1

n − 1
. (27)

Integrating equation (27) gives the result

Mm(τ) > 1

(Mm(0)−γ − γmτ)1/γ
. (28)

It follows that Mm(τ) diverges at, or before, the timeτm, which is defined by

τm = 1

mγMm(0)γ
.

Since all momentsMm(τ) are finite forτ < τc, τm clearly sets an upper bound toτc. If one
assumes that form > 3, Mm(0) > 1, then forν > 1 one finds that

τc 6 τm 6 1

mγ
→ 0 m → ∞. (29)

This implies thattc = 0, contradicting the assumptiontc > 0. We therefore conclude that
pre-gel solutions of the GSE do not exist forν > 1. Physically this means that, irrespective
of the initial condition, gelation occurs instantaneously.
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Now let us discuss the structure of solutions of GSE for the homogeneous coagulation
kernels (8) withµ > 1. It has been shown [13] that the generalized Smoluchovski equation
allows an exact post-gel solution of the form

ck(t) = c1(t)bk t > tc (30)

wherebk is constant andc1(t) is given by

c1(t) = c1(tc)/[1 + b(t − tc)]
n−1. (31)

The parameterb in (31) may be determined through substitution of (30) and (31) in (2) for
k = 1. The result isb = c1(tc)E1, where in generalEk is defined as

Ek =
∞∑

i1=1

∞∑
i2=1

· · ·
∞∑

in−1=1

K(k, i1, i2, . . . , in−1)bi1bi2 · · · bin−1. (32)

It should be noted that the solution (30) is consistent only ifEk < ∞ for all k. Furthermore,
by substituting equation (30) in the GSE, it is found that the factorsbk satisfy the following
equation for allk > 2:

E1

k∑
j=1

ibj = 1

(n − 1)!

k−n+1∑
i1=1

∞∑
i2=1

· · ·
∞∑

in−1=1

∞∑
in=k−i1−i2−···−in+1

i1K(i1, i2, . . . , in)bi1bi2 · · · bin

(33)

which is to be solved with the initial conditionb1 = 1.
In order to determine whether solutions of the form (30) are also allowed forν > 1, we

calculate the asymptotic behaviour of the solutionbk of (33). We assume that the asymptotic
behaviour ofbk is of the form

bk ∼ Bk−τ k → ∞. (34)

The requirement that attc = 0, the sol mass is finite, i.e.M(0) = 1 necessarily implies that
τ > 2. Substitution of ansatz (34) in (33), and approximation of the sum on the right-hand
side of (33) by an integral, gives a consistent solution only if

τ = (λ + n + 1)/n (35)

B =
(

E1

∞∑
j=1

I (τ )

)1/n

(36)

where the integralI (τ ) is defined as

I (τ ) = 1

(n − 1)!

∫ 1

0
dx1

∫ ∞

0
dx2 · · ·

∫ ∞

0
dxn−1

∫ ∞

1−x1−x2−···−xn−1

dxn x1

×K(x1, x2, . . . , xn)(x1x2 · · · xn)
−τ . (37)

The finiteness of the infinite sumsEk requires that

µ > (n − 1)(ν − 1) + (n − 2)(1 − µ′) (38)

and

µ′ > 1
2(1 + µ + ν) (39)

which yields the following restriction:

µ > ν − 1. (40)
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Under this conditionI (τ ) is also finite. We conclude, therefore, that the solutions of the
form (30) are allowed for all models withν > 1, provided thatµ > ν − 1.

It is worth pointing out that the conclusions drawn from the above discussion come as
a result of the specific choice of the reaction kernels (8). For general reaction kernels, it
is expected that instantaneous gelation can take place under certain restrictions other than
(40), which is similar to that of binary coagulations.

4. Conclusions

We have investigated the structure of the solutions of the generalized Smoluchovski equation
for the homogeneous coagulation kernels (8) withν > 1, i.e. for systems where the reactivity
of large clusters increases faster than their size. We found that for all solutions of the
generalized Smoluchovski equation, gelation occurs instantaneously, this being is attributed
to the multiple-site reactions occurring inn-tuple aggregation processes. In contrast to
binary coagulation, instantaneous gelation can take place in physical systems which undergo
multiple-siten-tuple aggregation. We have also studied the gel solutions to the GSE and
found that, ifµ > ν − 1, all solutions of the GSE have the same asymptotic behaviour, i.e.
ck(t) ∼ A(t)k−τ with τ = (λ + n + 1)/n. It should be noted that the coagulation kernels
(8) are actually characterized by two exponents,µ and ν, so it is not surprising that the
solutions of the GSE exibit qualitatively similar behaviour to those of the Smoluchovski
coagulation equation. However, if more involved coagulation kernels are considered, it is
expected that the general properties of solutions of the GSE may be distinct from those
predicted by the Smoluchovski coagulation equation.
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